A DEFINITIVE GUIDE TO
DESIGN FOR MANUFACTURING SUCCESS
Sheet Metal Design Guidelines

Form Feature Design Guidelines

Issue VIII, April 2015
Copyright Notice

© Geometric Limited. All rights reserved.

No part of this document (whether in hardcopy or electronic form) may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, to any third party without the written permission of Geometric Limited. Geometric Limited reserves the right to change the information contained in this document without prior notice.

The names or trademarks or registered trademarks used in this document are the sole property of the respective owners and are governed/protected by the relevant trademark and copyright laws.

This document is provided by Geometric Limited for informational purposes only, without representation or warranty of any kind, and Geometric Limited shall not be liable for errors or omissions with respect to the document. The information contained herein is provided on an "AS-IS" basis and to the maximum extent permitted by applicable law, Geometric Limited hereby disclaims all other warranties and conditions, either express, implied or statutory, including but not limited to, any (if any) implied warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of responses, of results, of workmanlike effort, of lack of viruses, and of lack of negligence, all with regard to the document.

THERE IS NO WARRANTY OR CONDITION OF NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO THE DOCUMENT. IN NO EVENT WILL GEOMETRIC LIMITED BE LIABLE TO ANY OTHER PARTY FOR LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS DOCUMENT, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.
Welcome to another issue of the DFM Guidebook. We highly appreciate your feedback for our previous issues. Please continue sending us your comments, suggestions and ideas for subsequent issues.

This week, our DFM experts provide you an interesting summary of important design guidelines for Sheet Metal.

Effective design principles in sheet metal process can save material and improve the manufacturability of designs. If sheet metal component features such as slots or holes are placed too close to each other they pose several problem during manufacturing leading to rejection or delay in delivery to customer.

In this edition, we focus on manufacturability guidelines for dimples and close with a best practice related to embossments.

If you have missed the previous issues of DFM Guidebook, please visit our website, www.dfmpro.com

Happy reading!

Rahul Rajadhyaksha
Senior Product Manager
Geometric Limited
Contents

Minimum Distance from Dimple to Bend ... 6
Minimum Distance from Dimple to Cutout ... 7
Minimum Distance between Dimples ... 8
Minimum Distance from Dimple to Hole ... 9
Minimum Distance from Dimple to Part Edge ... 10
Maximum Embossment Depth ... 11
Minimum Distance from Dimple to Bend

A certain minimum distance must be maintained between dimple and the bend feature to avoid deformation and fracture of the metal.

It is recommended that the minimum distance between dimple to bend should be two times sheet thickness plus the inside radius of the dimple plus radius of the bend.

\[t = \text{Sheet metal thickness} \]
Minimum Distance from Dimple to Cutout

A minimum distance must be maintained between dimple and cutout edge to avoid deformation and fracture of the metal.

It is recommended that a minimum distance of four times the sheet thickness plus the inside radius of each dimple must be maintained between a dimple and cutout edge.

\[t = \text{Sheet metal thickness} \]
Minimum Distance between Dimples

Care need to be taken when placing formed features close to each other. If a station does not clear a form already placed in a part, the form will get flattened out.

It is recommended that the minimum distance between dimples should be four times sheet thickness plus radius of the dimple.

\[t = \text{Sheet metal thickness} \]
Minimum Distance from Dimple to Hole

To avoid deformation and fracture of the metal a certain minimum distance should be maintained between dimple and adjacent holes.

It is commonly recommended that the minimum distance between dimple and hole should be three times sheet thickness.

\[t = \text{Sheet metal thickness} \]
Minimum Distance from Dimple to Part Edge

It is recommended that the minimum distance between dimples to part edge should be four times material thickness plus radius of the dimple to avoid deformation and fracture of the metal.

\[t = \text{Sheet metal thickness} \]
Maximum Embossment Depth

Embosses are small, shallow formed projections on the surface of stamped parts. During this operation, stretching is the main deformation mode resulting in high tension. Thereby the metal is subject to excessive thinning or fracturing. Consequently, the depth of the embossed feature is restricted by the material’s thickness and ability to stretch in addition to the emboss geometry.

It is recommended that the maximum depth of embossment be less than or equal to three times material thickness.

\[t = \text{Sheet metal thickness} \]