A DEFINITIVE GUIDE TO
DESIGN FOR MANUFACTURING SUCCESS
Sheet Metal Design Guidelines

Curl and Lance Design Guidelines

Issue X, May 2015
Copyright Notice

© Geometric Limited. All rights reserved.

No part of this document (whether in hardcopy or electronic form) may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, to any third party without the written permission of Geometric Limited. Geometric Limited reserves the right to change the information contained in this document without prior notice.

The names or trademarks or registered trademarks used in this document are the sole property of the respective owners and are governed/protected by the relevant trademark and copyright laws.

This document is provided by Geometric Limited for informational purposes only, without representation or warranty of any kind, and Geometric Limited shall not be liable for errors or omissions with respect to the document. The information contained herein is provided on an “AS-IS” basis and to the maximum extent permitted by applicable law, Geometric Limited hereby disclaims all other warranties and conditions, either express, implied or statutory, including but not limited to, any (if any) implied warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of responses, of results, of workmanlike effort, of lack of viruses, and of lack of negligence, all with regard to the document.

THERE IS NO WARRANTY OR CONDITION OF NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO THE DOCUMENT. IN NO EVENT WILL GEOMETRIC LIMITED BE LIABLE TO ANY OTHER PARTY FOR LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS DOCUMENT, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.
Welcome to another issue of the DFM Guidebook. We highly appreciate your feedback for our previous issues. Please continue sending us your comments, suggestions and ideas for subsequent issues.

If you have any feedback or questions on DFM guidebook, please write to us at info@dfmpro.com

Happy reading!

Rahul Rajadhyaksha
Senior Product Manager
Geometric Limited
Contents

Curl Radius .. 6
Minimum Distance between Curl and Hole ... 7
Minimum Depth of Lance ... 8
Minimum Distance from Bend to Lance .. 9
Minimum Distance from Hole to Lance .. 10
Minimum Spacing between Lances .. 11
Curl Radius

Curling is the process of forming the sheet metal flange into a rolled shape. Curling strengthens the edges and provides smoothness to the surface. It is commonly used as a means of joining two components.

Curls are often added to avoid sharp edges and make parts safer for handling and use.

It is recommended that the outside radius of curl should be minimum 2X of the material thickness.

$$t = \text{Sheet metal thickness}$$

$$R = \text{Outside radius}$$
Minimum Distance between Curl and Hole

It is recommended that the minimum distance between a curl and the edge of a hole should be the sum of curl radius and material thickness.

\[t = \text{Sheet metal thickness} \]
\[D = \text{Distance} \]
Minimum Depth of Lance

Lancing is a piercing operation in which the work piece is sheared and bent with strike of a die. In this process there is no material removal however it only modifies the geometry. Lancing can be used to make partial contours and free up material for other operations.

Lancing is used to make tabs, vents and louvers.

It is recommended that the minimum depth of lance should be 2X the material thickness.

\[t = \text{Sheet metal thickness} \]
\[H = \text{Depth of lance} \]
Minimum Distance from Bend to Lance

During lancing operation a sufficient degree of clearance should be given around the lance feature and bend.

It is recommended that minimum distance between lance and bend should be 3X the material thickness plus bend radius.

\[t = \text{Sheet metal thickness} \]

\[r = \text{Inside bend radius} \]
Minimum Distance from Hole to Lance

During lancing operation we need to maintain sufficient degree of clearance around the lance feature.

It is recommended that the distance between lance and hole should be 3X the material thickness.

\[t = \text{Sheet metal thickness} \]
Minimum Spacing between Lances

During lancing operation sufficient degree of clearance should be maintained around the lance feature as the punch and die will need some degree of clearance around the feature in order to hold down the work piece during operation. If another lance is placed inside this working envelope it will be crushed by the punch and die, potentially damaging the work piece and tools.

It is recommended to maintain sufficient clearance between two lance features by considering die and punch clearance allowance.

\[t = \text{Sheet metal thickness} \]